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Holographic screening method for 
microelastic solids 

R. S. LAKES*, D. GORMAN*,  W. BONFIELD 
Department of Materials, and *Department of Mechanical Engineering, 
Queen Mary College, Mile End Road, London E1 4NS, UK 

An experimental method is presented for the rapid evaluation of structured solids 
with microelastic degrees of freedom associated with the microstructure. By con- 
trast with earlier methods based on size effect studies, the present method makes 
use of a single specimen subjected to holographic interferometry. Results are 
presented for polymethyl methacrylate and for a dense polyurethane foam, which in 
previous studies were demonstrated to behave, respectively, as classically elastic 
and Cosserat solids. 

1. Introduct ion 
1.1. Microelastic degrees of freedom: 

Cosserat model 
Structured materials can possess degrees of 
freedom in addition to those of a homogeneous 
solid. The degrees of freedom considered here 
are distinct from phenomena such as visco- 
elasticity, plasticity, anisotropy, and thermo- 
elasticitY. One way to take into account some of 
the possible motions and deformations of  struc- 
tural elements in a continuum model is to apply 
the Cosserat (micropolar) theory of  elasticity 
[1-3]. This theory, which includes the ordinary 
or classical elasticity as a special case, postulates 
the local rotation of  points to be an independent 
kinematic variable not necessarily equal to the 
macro-rotation associated with the gradients of  
the displacements. The local or micro-rotation 
is associated with a new dynamical variable, the 
couple per unit area upon a differential element, 
or couple stress. The constitutive equations for 
an isotropic Cosserat elastic solid are, for a 
linear material at small strain [3]: 

tkl = 2errfikl q- (2/z + K)ekl 

q- tCeklrn(r m - -  t~m ) 

mkl = ~q~r,rfikl + fl~bk,l + Y~l,k 

in which tkl is the (asymmetric) usual (Cauchy) 

stress tensor, ekl is the small strain, defined in 
terms of the displacement u: ek~ = 1/2(Uk,~ + 
Ul,k), r is the macro-rotation r m = 1/2emlnU,,l in 
which em~ . is the permutation symbol, rnk~ is the 
couple stress tensor, q~ is the micro-rotation, and 
a, fl, y, x, #, ;t are elastic constants. Classical 
elasticity is obtained as a special case by allowing 
the first four of these elastic constants to tend to 
zero. 

Cosserat elastic solids are predicted to differ in 
many ways from classically elastic materials. In 
the bending [4] and torsion [5] of  rods and in the 
bending of  plates [4] size effects are predicted to 
occur in which thin specimens are more rigid 
than expected from the behaviour of thick speci- 
mens. Mode structure of  vibrating objects is 
predicted to be modified in such a way that 
higher modes are shifted to frequencies which 
exceed their classical values [6, 7]. Perhaps the 
most important prediction in terms of practical 
uses of  materials is that stress concentration 
factors around small holes are reduced [8] and 
that the stress intensity factor associated with 
cracks can differ substantially with classical 
predictions [9-11]. 

1.2. Cur ren t  e x p e r i m e n t a l  m e t h o d s  
Experimental studies have generally be based 
on the size effects (stiffening) predicted to occur 
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Figure 1 Free-body diagram of corner element. (a) Classically elastic solid. (b) Cosserat elastic solid. (c) A structured solid. 

in thin specimens. Plate bending studies of  
metals [12, 13] and torsion studies of  rods of  a 
model composite [5] disclosed classical behav- 
iour, while a thickness-resonance size effect 
study of  a polymer foam [14] disclosed possible 
effects of Cosserat elasticity. One of  the authors 
(R.L.) has performed torsion and bending size- 
effect experiments on human compact bone 
[15-18], a low density polymeric foam [19] a 
syntactic foam and a high density polymeric 
foam [20]. Bone behaves as an anisotropic 
Cosserat solid, the low-density foam is non- 
classical but appears to require a more complex 
model than the Cosserat model, the syntactic 
foam is very nearly classical, and the dense poly- 
urethane foam behaves as an isotropic Cosserat 
solid for which all six elastic constants are deter- 
mined. 

The method of  size effects, then, is capable of 
distinguishing between classical and Cosserat 
elastic behaviour and in its more recent forms, is 
capable of  determining all six Cosserat elastic 
constants of  an isotropic material. The method 
of size effects, however, has the disadvantage 
that it is extremely tedious: specimens must be 
cut to progressively smaller sizes or an ensemble 
of  specimens of  identical properties must be 
obtained. In addition, care must be taken that 
no macroscopic inhomogeneity or variation 
among specimens is allowed to obtrude in the 
data in such a way as to mimic a size effect. Also, 
the range of  specimen sizes must include diam- 

eters comparable to the length scale of  the 
microstructure. A set of  specimens from 5 to 25 
times the characteristic length of  the microstruc- 
ture, in diameter will suffice for the demon- 
stration of the existence of  microelastic effects, if 
present. Such a set will also permit a reasonably 
accurate determination of the Cosserat charac- 
teristic lengths [15, 17]. If, however, the structure 
size is small, the preparation of  the thinnest 
of these specimens can present a significant 
challenge to the experimentalist. The present 
experimental method is intended to remedy 
some of  these shortcomings and to provide a 
rapid screening technique to distinguish classical 
from Cosserat elastic solids. 

2. P r i s m a t i c  bar  in t o r s i o n  
2.1. Classical and Cosserat elastic 

analyses: corner elements 
Theoretical determination of stress and strain 
distributions in a prism of square or rectangular 
cross-section is a well-known problem in classi- 
cal elasticity [21]. The corresponding problem in 
Cosserat elasticity is more difficult and has been 
examined only recently [22]. For  the purposes of  
this article, the behaviour of  a small portion of 
material at a corner of the prism is considered. 
Fig. la shows such a corner element of a classi- 
cally elastic solid, with surface tractions associ- 
ated with shear stress indicated. Since there are 
no loads applied to the lateral surfaces in tor- 
sion, the shear stress must be zero at the corner 

2883 



by virtue of the symmetry of the stress tensor in 
classical elasticity. Fig. lb shows a corner ele- 
ment in a Cosserat elastic material. There is still 
no load on the lateral surface, by assumption. In 
this case, however, couple stress due to the local 
rotation gradient is present, as is an asymmetry 
in the (ordinary) force stress. This asymmetry in 
the stress satisfies the requirement of equilibrium 
of the element, since the torque produced by the 
asymmetric force stress is balanced by the torque 
due to the couple stress. The conclusions of  the 
above arguments are borne out in the detailed 
mathematical analyses in [21, 22]. A physical 
perception of the above may be gained by exami- 
nation of Fig. lc, which shows a corresponding 
corner element in a lattice structure. Each strut 
in the lattice can support both a force and a 
moment. For  a microelement containing a suf- 
ficient number of struts, the average shear force 
per area can be equated with the shear stress and 
the average moment per unit area with the 
couple stress. The diagram then becomes equi- 
valent to Fig. lb. 

2.2. A crack in the corner 
The aim of the present experimental method is 
to reveal the presence or absence of Cosserat 
elastic effects in the simplest and most graphic 
manner possible. A small crack or notch is 
therefore introduced at the corner. In a classical 
solid there is no stress at the corner, hence no 
tendency for the crack to open when the bar is 
subjected to torsion. This is strictly true only for 
a crack of  infinitesimal depth since the shear 
stress is exactly zero only at the corner itself. In 
a Cosserat solid, the introduction of the crack 
will relieve nonzero force stresses and couple 
stresses, hence the crack will tend to open in 
mode III as shown in Fig. 2. This nonclassical 
crack opening is the basis for the present 
method. 

The present method, in contrast to other poss- 
ible methods based on Cosserat elastic analyses 
of other crack geometries [9-11], has the advan- 
tage that a classical material yields a null result 
and a Cosserat solid yields a finite result in terms 
of relative crack displacement. 

3. Experimental methods 
3.1. Mechanical aspects 
Specimens of a prismatic shape with square 
cross-section were prepared on a milling machine 
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Figure 2 Corner crack in a twisted bar. (a) Classically elastic 
solid. (b) Cosserat elastic solid. 

to give a thickness ~ 7 to 15ram and length 
120 mm. Scale marks were made on the sur- 

face, which was also coated with a thin layer of 
reflective paint. Torque was applied to the 
specimen statically by placing a known weight 
on a torque arm. The rotating end of the 
specimen was constrained by a ball bearing. 

3.2. Holographic aspects 
3.2. 1. Apparatus and processing 
The holographic apparatus is drawn in Fig. 3. A 
5 mW helium-neon laser was used in conjunc- 
tion with a pneumatic vibration isolation table 
(Newport Corporation) located in a basement 
room. The laser beam was passed through a 
beamspreader and spatial filter and was then 
collimated. Double exposure holograms were 
produced as follows. An exposure, typically one 
second in duration, was made using a camera 
shutter not in contact with the isolation table. 
Torque was applied, and the specimen was 
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Figure 3 Experimental configuration. 



allowed to creep for about 1 min to reduce the 
creep rate during the second exposure, which 
was identical in duration to the first. Ostrovsky 
et al. [23] provide an overview of double 
exposure holography. 

The holographic plate, Agfa-Gevaert 
8E75HD emulsion, was then removed, devel- 
oped in Kodak D19 developer for approxi- 
mately 2 min to a density of ,-~ 1.6, placed in an 
acid stopbath for 30sec, fixed for 2min, and 
bleached. Bleach composition was 1.5 g mercuric 
chloride, 1.5g potassium bromide, 100ml water 
[24]. This bleach is toxic and can be absorbed 
through the skin, therefore appropriate safety 
measures including the use of rubber gloves, were 
taken. The plate was then washed in water for 
several minutes, and dried in graded alcohols: 
50% ethanol for 2min, 75% ethanol for 2min, 
100% ethanol for 2min, followed by air drying. 

3.2.2.  R e c o r d i n g  g e o m e t r y  
Fringe patterns observed in double-exposure 
holographic interferograms depend on the dis- 
placement field which occurs between exposures, 
by virtue of the changes in optical path length 
which occur. Interpretation of the fringe pattern 
depends in part upon the geometry in which the 
hologram is recorded and reconstructed [25] and 
can be simplified by the choice of an appropriate 
geometry. In the present experiments the holo- 
graphic plate was placed parallel to a lateral 
surface of the specimen, less than 1 mm away. 
The laser beam was directed at nearly normal 
incidence to the plate, as shown in Fig. 3. In this 
configuration, the light passes through the trans- 
parent plate, is reflected from the specimen, and 
enters the plate from the opposite side. A holo- 
gram recorded as above and viewed and illumi- 
nated in light normally incident to the plate may 
be interpreted in a particularly simple fashion 
[25]. The displacement, d, of each point on the 
specimen in a direction orthogonal to the holo- 
graphic plate is 

d = m2/2 

in which m is the fringe order and 2 is the 
wavelength of laser light used, i.e. 0.6328 #m in 
this case. 

A hologram produced as above, with the 
references and object light entering the emulsion 
from opposite sides, is viewed by reflected light. 
Reconstruction of such a hologram involves 

Bragg diffraction, which is wavelength sensitive. 
Consequently, the hologram may be viewed in 
white light; a laser is not necessary for viewing. 
The concept is due to Denisyuk [26]. In general, 
the white light source must be reasonably 
spatially coherent and this requirement becomes 
more severe the further the original object was 
from the hologram plate. In the present 
approach, the plate is very close to the object 
and the holograms could be viewed in sunlight 
or light from an unfrosted incandescent bulb. 

Reflected light holograms tend to be very dim 
unless they are bleached. The bleach process 
described above converts the amplitude holo- 
gram into a phase hologram, considerably 
improving the diffraction efficiency, and hence 
the brightness, of the image [24]. Shrinkage of 
the emulsion during drying can degrade the 
quality of a reflected light hologram, but the 
alcohol drying procedure used in this study 
prevented nonuniformity in drying and 
improved the image quality [27]. 

3.2.3. Fringe control 
A fringe pattern associated with torsion of a bar 
of square cross-section is shown in Fig. 4. The 
twist angle per unit length is 0.033radmin -1. 
The right end of the specimen is fixed. The rota- 
tion of a cross-section increases with distance 
from the fixed end and the density of fringes 
correspondingly increases. Now a rather sub- 
stantial twist angle per unit length is necessary to 
reveal mode III opening of a small crack in the 
corner of the bar. This will result in a dense 
pattern of fringes, since the crack must be made 
a sufficient distance from the fixed end such that 
end effects do not perturb the deformation field 
near the crack. A variety of "fringe control" 
methods have been suggested to reduce the den- 
sity of background fringes in the vicinity of a 
region of interest [28]. The method used here is 
to attach the holographic plate to the specimen 
itself [29]. The plate experiences a rigid body 
rotation corresponding to the section of the 
specimen to which it is attached. The point of 
zero relative motion between plate and speci- 
men, hence a region of low fringe density, is 
therefore shifted away from the specimen end. 
Figs. 5 and 6 display fringe patterns obtained by 
this method. By using this approach, the corner 
crack can be located away from the specimen 
end in a region of moderate fringe density, which 
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Figure 4 Photograph of a double-exposure hologram of a dense polyurethane foam bar (8.45 mm square cross-section) in 
torsion. The holographic plate is fixed. 

facilitates interpretation of  the hologram. In 
addition to neutralizing the fringe effects of  
specimen rigid body motions, this approach can 
eliminate the effect of  ambient vibrations, per- 
mitting holographic studies in noisy environ- 
ments [29]. In the present study, the holographic 
plate was attached to the specimen ( i )by  
cementing with a cyanoacrylate adhesive, and 
(ii) by a set of  steel spring clips. In approach (i) 
care must be taken not to cement the emulsion 

side of  the plate, and to cement only one or two 
small points on the specimen. This is accom- 
plished by using one or two thin offsets between 
plate and specimen. Approach (ii) was simpler, 
but the size of  specimen which could be handled 
this way was limited. 

3.2.4. Pho tography  o f  ho lograms  
Holograms were illuminated by either the sun or 
a bare, 1000 W photoflood lamp. Either source 

Figure 5 Photograph of a double-exposure hologram of a solid polymethylmethacrylate bar (9.0 mm square cross-section) 
in torsion, with a crack length of 1.0mm. The holographic plate is cemented to the bar. 
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Figure 6 Photograph of a double-exposure hologram of a dense polyurethane foam bar (8.45 mm square cross-section) in 
torsion, with a crack length of 0.76ram. The holographic plate is cemented to the bar. 

subtends an angle of 0.01 rad at the hologram 
plate, a sufficiently small angle to prevent 
blurring of  the fringes. The holograms were 
photographed in 35ram format, using macro 
equipment. Since the fringes do not localize at 
the specimen image surface [25], a small lens 
aperture was used to obtain sufficient depth of  
field. 

4. Results 
4.1. Solid PMMA and foamed 

polyurethane 
A comparison was made between the behaviour 
of  the corner crack in an amorphous material 
without significant structure at dimensions 
above the molecular scale, solid polymethyl 
methacrylate (PMMA), and in a cellular 
material, a dense (340kgm -3) polyurethane 
foam with cells from 0.050 to 0.150 mm diam- 
eter. Solid PMMA behaves as a classically visco- 
elastic material [15], while the polyurethane 
foam behaves as a Cosserat solid [20], as demon- 
strated by the method of  size effects. A holo- 
graphic fringe pattern for a bar of  solid PMMA 
in torsion is shown in Fig. 5. In this case, the 
holographic plate was cemented to one point on 
the specimen, hence the asymmetric pattern. The 
twist angle per unit length, determined by count- 
ing fringes in a manner similar to that used by 
Wilson [30], was 0 = 0 .14radm -~. The corner 
crack, exhibits the same fringe order, hence the 
same displacement, on both sides of  the crack. 
The crack, therefore, has not, within the 
experimental resolution, opened in mode III. 
The situation is that of  Fig. 2a. In the poly- 

urethane foam, shown in Fig. 6, a shift of  about 
0.5 fringe between opposite sides of the crack, is 
visible. One fringe corresponds to half a 
wavelength of  light, or 0.6328 ktm/2. The defor- 
mation resembles that shown in Fig. 2b. We 
define a dimensionless measure of  crack opening 
u" = u/Oae so that experiments involving speci- 
mens of  different cross-section width a, twist 
angle 0, and crack length e, can be compared. 
For  the polyurethane foam, the maximum 
corner crack displacement is 1/4 wavelength and 
0 = 0.11 rad m-~, so u' = 0.17. By contrast, in 
the PMMA, u' < 0.03. A finite value of u' is 
possible in PMMA even though it behaves 
classically, since the crack length is finite, hut no 
crack opening can be resolved in the PMMA. 

The physical significance of  the nondimen- 
sional displacement u' may be seen in a different 
perspective if one recalls that the maximum 
strain 7max in a square classically elastic bar in 
torsion is 0.675a0 [21]. This strain occurs along 
the midline of each lateral surface. A "strain" 
associated with the corner crack opening u may 
be defined as ~cr = u/c. Then the ratio of  these 
strains is 7cr/Tmax = 1.48u'. The quantity u', 
then, may be regarded as a measure of  the non- 
classical corner strain relieved by the crack, 
normalized to the peak classical strain. 

5. Conclusions 
A method based on interferometry by reflection 
holography has been developed for the screening 
of structured materials for microelastic effects. 
The presence or absence of mode III opening of 
a corner crack in a twisted bar, can readily be 
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j u d g e d  o n  the  bas i s  o f  t he  i n t e r f e r o m e t r i c  f r inge  

p a t t e r n .  

P o l y m e t h y l m e t h a c r y l a t e ,  a m a t e r i a l  k n o w n  to  

be a c lass ica l  sol id ,  d i sp l ays  ze ro  c r a c k  o p e n i n g ,  

whi le  a d e n s e  p o l y u r e t h a n e  f o a m  iden t i f i ed  as a 

C o s s e r a t  so l id  by  the  m e t h o d  o f  size effects ,  

exh ib i t s  a f inite,  o b s e r v a b l e  c r a c k  o p e n i n g .  
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